# You can complete the following pieces of code
###########
### 7.1 ###
###########
### a
f.shots <- function(p.success=.6, hits.stop=2){
shots <- 0
missed <- 0
success <- 0
while ( ### condition to complete ### ){
### actions to complete here ###
}
# result:
c(shots=shots,success=success)
}
f.shots()
### b
# initialize a vector of size 1000 with missing values
sim.shots <- rep(NA,1000)
# fill in the missing values...
mean(sim.shots)
sd(sim.shots)
# do the same with both shots and successes:
sim.shots.success <- data.frame(shots=rep(NA,1000), success=rep(NA,1000))
mean(sim.shots.success$shots)
mean(sim.shots.success$success)
sd(sim.shots.success$shots)
sd(sim.shots.success$success)
### c
# plot the result
###########
### 7.3 ###
###########
# let's assume all random variables are independent, continuous and normally distributed
f.savings <- function(m.unit=5, sd.unit=4, m.market=40000, s.market=10000){
# calculate market size:
market.size <-
# calculate vector of savings and sum it
f.savings()
# initialize
total.savings <- rep(NA,1000)
# fill in
mean(total.savings)
sd(total.savings)
# another story:
# let's assume that there are 40000 firms
# each firm will independently enter the market with probability 1/2501
# each firm which enters the market will buy 2501 widgets
# otherwise it will buy 0 widgets
# do the same
###########
### 7.8 ###
###########
# create function according to the procedure p.143
# use rchisq and rnorm
unidim.sim <- function(estimate, sd.estimate, df, n){
}
# try it
unidim.sim(estimate=600, sd.estimate=400, df=50, n=5)
# plot the result with 1000 points
# 1000 simulations:
cost.eff <- rep(NA,1000)
# fill in
# histogram
hist(cost.eff)
# use function quantile for the confidence
# try again with different values
Monday, October 26, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment